

Jednostka Badawczo-Rozwojowa Institute of Logistics and Warehousing Research and Development Unit

strona 1

stron 4

AB 053

ZAKRES AKREDYTACJI Laboratorium Urządzeń Elektronicznych

Bezpieczeństwo urządzeń techniki informatycznej i elektrycznych urządzeń techniki biurowej: Norma: PN-EN 60950

Kompatybilność elektromagnetyczna urządzeń elektrycznych i elektronicznych:

Emisja:

 Pomiary napięć zaburzeń radioelektrycznych na przewodach sieci zasilającej.

Normy: EN 55022 EN 55014-1 EN 55011

 Pomiary natężeń pól zaburzeń radioelektrycznych z użyciem komory GTEM

 Badanie harmonicznych prądu Norma: IEC 61000-3-2

· Badanie migotania (flicker) Norma: EN 61000-3-3

Odporność:

 Badanie odporności na wyładowania elektrostatyczne Norma: EN 61000-4-2

· Badanie odporności na pole elektromagnetyczne. Norma: EN 61000-4-3

 Badanie odporności na szybkie elektryczne stany przejściowe (burst) Norma: EN 61000-4-4

· Badanie odporności na zaburzenia udarowe (surge). Norma: EN 61000-4-5

 Badanie odporności na zaburzenia przewodzone indukowane przez pola elektromagnetyczne o częstotliwościach radiowych. Norma: EN 61000-4-6

 Badanie odporności na pole magnetyczne o częstotliwości sieci elektroenergetycznej Norma: EN 61000-4-8

 Badanie odporności na impulsowe pole magnetyczne Norma: EN 61000-4-9

· Badanie odporności na zapady napięcia, krótkie przerwy i zmiany napięcia. Norma: EN 61000-4-11

e-mail: la@ilim.poznan.pl http://www.ilim.poznan.pl/LA

SPRAWOZDANIE Z BADANIA NR 120/2008

Urządzenie I	padane		
Nazwa: Sygnalizator		Typ/model: SG-3U	
Nr fabryczny: brak	Rok produkcji: 2008	Producent: P.P.H. POLMED	Stan: nowy
Charakterystyk Urządzenie do r i prądu SKP-IT-	nonitorowania i rejestrowania zdarzeń	z układu kontroli izolacji, t	emperatury
Zleceniodawca	: Adres:		
Licocinodanio	Adres:		
P.P.H. POLME		Błażeja 94 C	
	D 61-608 Poznań, ul.	Błażeja 94 C Data zakończenia b	adania:

Badanie odporności na wyładowania elektrostatyczne Podstawa badania: metoda wg normy EN 61000-4-2:1995 + A1:1998 + A2:2001

Ogólne wyniki badania:

Rodzaj i zakres badania:

bezpośrednie

Odporność	Wymagana według: PN.EN 61000-6-1:2007 Napięcie / kryterium działania	Stwierdzona: Napięcie / kryterium działania */	
Wyładowania pośrednie	± 4 kV / B	±4 kV/a	
Wyładowania bezpośrednie	± 4 kV / B przez styk ± 8 kV / B przez powietrze	± 4 kV / a ± 8 kV / a	

± 8 kV / B przez powietrze

*/ wg EN 61000-4-2:1995 + A1:1998 + A2:2001

lmię i nazwisko	Stanowisko	Data	Podpis
Wykonał: mgr inż.Paweł Kaźmierczak	Administrator Systemu	09.01.2009r.	Kus'
Sprawdził: dr inż.Krzysztof Sieczkarek	Kierownik LA	09.01.2009r	Zu
Zatwierdził: dr inż.Grzegorz Szyszka	Dyrektor ILiM	09.01.2009r	

Wyniki badań odnoszą się wyłącznie do badanych obiektów. Bez pisemnej zgody Laboratorium Urządzeń Elektronicznych sprawozdanie nie może być powielane inaczej, jak tylko w całości.

RP-080120-LA Sprawozdanie z badania Sygnalizatora SG-3U

ul. Estkowskiego 6 tel. +48 61 8504890 61-755 Poznań fax +48 61 8526376 office@ilim.poznan.pl gs1pl@gs1pl.org Konto bankowe: Bank Zachodni WBK S.A. 6 o/Poznań nr 39 1090 1362 0000 0000 3601 7908 REGON: 000018603 NIP: 777-00-20-410 Zarejestrowany pod nr KRS 0000052866 – Wydział VIII Gospodarczy Krajowego Rejestru Sądowego Poznań – Nowe Miasto i Wilda

www.gs1pl.org www.ilim.poznan.pl

Jednostka Badawczo-Rozwojowa

Research and Development Unit

1 Aparatura badaniowa:

symulator wyładowań elektrostatycznych NSG 435 firmy Schaffner

2 Warunki zewnętrzne

Temperatura otoczenia	22,2 °C
Wilgotność względna	38,6 %
Ciśnienie atmosferyczne	1005 hPa

3 Stan pracy badanego urządzenia

Sygnalizator SG-3U (rejestrujący zdarzenia) współpracował z układem SKIP-IT-3. Normalne działanie urządzenia w granicach określonych przez zleceniodawcę realizowało funkcję nadzoru (rejestracji zdarzeń) nad współpracującym z nim układem kontroli izolacji, temperatury i prądu SKP-IT-3.

Zasilanie sygnalizatora stanowił akumulator 12VDC

4 Wyniki badania:

Wyładowania pośrednie

Punkt wyładowczy	Metoda wyładowania	Napięcie [kV]	llość wyładowań	Kryterium działania*/	Uwag
VCP:	Przez	+2 / -2	10 / 10	a/a	
lewy bok	styk	+4 / -4	10 / 10	a/a	
VCP:	Przez	+2 / -2	10 / 10	a/a	
górny bok	styk	+4 / -4	10 / 10	a/a	
VCP:	Przez	+2 / -2	10 / 10	a/a	
prawy bok	styk	+4 / -4	10 / 10	a/a	
VCP: dolny bok	Przez	+2 / -2 +4 / -4	10 / 10 10 / 10	a/a a/a	

^{*/} wg EN 61000-4-2:1995 + A1:1998 + A2:2001

RP-080120-LA Sprawozdanie z badania Sygnalizatora SG-3U

Jednostka Badawczo-Rozwojowa

Wyładowania bezpośrednie przez styk

Punkt wyładowczy	Metoda wyładowania	Napięcie [kV]	llość wyładowań	Kryterium działania*/	Uwag
Obudowa metalowa	Przez	+2 / -2	10 / 10	a/a	
spód i boki	styk	+4 / -4	10 / 10	a/a	
4x wkręty mocujące	Przez	+2 / -2	40 / 40	a/a	
panel czołowy	styk	+4 / -4	40 / 40	a/a	

^{*/} wg EN 61000-4-2:1995 + A1:1998 + A2:2001

Wyładowania bezpośrednie przez powietrze

Punkt wyładowczy	Metoda wyładowania	Napięcie [kV]	llość wyładowań	Kryterium działania*/	Uwag
Panel czołowy	Przez	+2 / -2	10 / 10	a/a	
wyświetlacz LCD	powietrze	+4 / -4	10 / 10	a/a	
wyswietlacz LCD	powietize	+8 / -8	10 / 10	a/a	
	Przez powietrze	+2/-2	20 / 20	a/a	
Panel czołowy		+4 / -4	20 / 20	a/a	
2x dioda LED		+8 / -8	20 / 20	a/a	
	Przez	+2 / -2	20 / 20	a/a	
Panel czołowy		+4 / -4	20 / 20	a/a	
6x przycisk	powietrze	+8 / -8	20 / 20	a/a	

^{*/} wg EN 61000-4-2:1995 + A1:1998 + A2:2001

5 Określenia:

Wyładowanie bezpośrednie (ang. Direct application) – wyładowanie przez urządzenie badane.

Wyładowanie pośrednie (ang. Indirect application) – wyładowanie przez płaszczyznę sprzęgającą sąsiadującą z urządzeniem badanym w celu zasymulowania wyładowania człowieka przez przedmioty sąsiadujące z urządzeniem badanym.

Płaszczyzna sprzęgająca (ang. Coupling plane) – płyta przewodząca, przez którą wykonywane są wyładowania elektrostatyczne w celu zasymulowania wyładowań elektrostatycznych przez przedmioty sąsiadujące z urządzeniem badanym:

RP-080120-LA Sprawozdanie z badania Sygnalizatora SG-3U strona 3 stron 4

Jednostka Badawczo-Rozwojowa

Institute of Logistics and Warehousing Research and Development Unit

- VCP (ang. Vertical coupling plane) pionowa płaszczyzna sprzęgająca,
- HCP (ang. Horizontal coupling plane) pozioma płaszczyzna sprzęgająca.

Metoda wyładowania przez styk (ang. Contact discharge method) – metoda, w której elektroda symulatora styka się z urządzeniem badanym, a wyładowanie jest wywoływane wyłącznikiem wyładowczym symulatora.

Metoda wyładowania przez powietrze (ang. Air discharge method) – metoda, w której naładowana elektroda symulatora jest zbliżana do urządzenia badanego, a wyładowanie jest wywołane iskrą do urządzenia badanego.

Kryteria działania

Działanie urządzenia badanego klasyfikuje się według następujących kryteriów :

- a normalne działanie w granicach określonych przez producenta wyrobu,
 zleceniodawcę badań lub nabywcę wyrobu,
- b chwilowa utrata funkcji albo obniżenie jakości działania, które ustępuje po zakończeniu zaburzeń i po którym urządzenie badane powraca do normalnego działania bez udziału operatora,
- chwilowa utrata funkcji albo obniżenie jakości działania, którego skorygowanie wymaga interwencji operatora,
- d utrata funkcji albo obniżenie jakości działania, którego nie można usunąć z powodu uszkodzenia urządzenia lub programu, albo utraty danych.

RP-080120-LA Sprawozdanie z badania Sygnalizatora SG-3U

strona 4 stron 4