

ZAKRES AKREDYTACJI Laboratorium Urządzeń Elektronicznych

Bezpieczeństwo urządzeń techniki informatycznej i elektrycznych urzadzeń techniki biurowej:
Norma: PN-EN 60950
Kompatybilność elektromagne-
tyczna urządzeń elektrycznych
i elektronicznych:
Emisja:

- Pomiary napięć zaburzeń radioelektrycznych na przewodach sieci zasilającej.
Normy: EN 55022
EN 55014-1 EN 55011
- Pomiary natęzeń pól zaburzeń radioelektrycznych z użyciem komory GTEM
- Badanie harmonicznych pradu Norma: IEC 61000-3-2
- Badanie migotania (flicker)

Norma: EN 61000-3-3
Odporność:

- Badanie odporności na
wyładowania elektrostatyczne
Norma: EN 61000-4-2
- Badanie odpornoścí na pole elektromagnetyczne.
Norma: EN 61000-4-3
- Badanie odporności na szybkie elektryczne stany przejściowe (burst)
Norma: EN 61000-4-4
- Badanie odporności na zaburzenia udarowe (surge).
Norma: EN 61000-4-5
- Badanie odporności na zaburzenia przewodzone indukowane przez pola elektromagnetyczne o częstotliwościach radiowych. Norma: EN 61000-4-6
- Badanie odporności na pole magnetyczne o częstotliwości sieci elektroenergetycznej
Norma: EN 61000-4-8
- Badanie odporności na impulsowe pole magnetyczne
Norma: EN 61000-4-9
- Badanie odporności na zapady napiecia, krótkie przerwy i zmiany napiecia. Norma: EN 61000-4-11
e-mail: la@ilim.poznan.pl http://www.ilim.poznan.pl/LA


## SPRAWOZDANIE Z BADANIA NR 120/2008

| Urządzenie badane |  |  |  |
| :--- | :--- | :--- | :--- |
| Nazwa: <br> Sygnalizator | Typ/model: <br> SG-3U |  |  |
| Nr fabryczny: <br> brak | Rok produkcji: <br> 2008 | Producent: <br> P.P.H. POLMED | Stan: <br> nowy |

## Charakterystyka urządzenia:

Urządzenie do monitorowania i rejestrowania zdarzeń z układu kontroli izolacji, temperatury i pradu SKP-IT-3

| Zleceniodawca: | Adres: |  |
| :--- | :---: | :---: |
| P.P.H. POLMED | 61-608 Poznań, ul. Błażeja 94 C |  |
| Data przyjęcia: | Data rozpoczęcia badania: | Data zakończenia badania: |
| 18.11 .2008 r. | 16.12 .2008 r . | 16.12 .2008 r . |

## Rodzaj i zakres badania:

Badanie odporności na wyładowania elektrostatyczne
Podstawa badania: metoda wg normy EN 61000-4-2:1995 + A1:1998 + A2:2001

## Ogólne wyniki badania:

| Odporność | Wymagana według: <br> PN.EN 61000-6-1:2007 <br> Napięcie / kryterium działania | Stwierdzona: <br> Napięcie $/ \mathrm{kryterium}$ <br> działania $* /$ |
| :---: | :---: | :---: |
| Wyładowania <br> pośrednie | $\pm 4 \mathrm{kV} / \mathrm{B}$ | $\pm 4 \mathrm{kV} / \mathrm{a}$ |
| Wyładowania <br> bezpośrednie | $\pm 4 \mathrm{kV} / \mathrm{B}$ przez styk <br> $\pm 8 \mathrm{kV} / \mathrm{B}$ przez powietrze | $\pm 4 \mathrm{kV} / \mathrm{a}$ |
| $\pm 8 \mathrm{kV} / \mathrm{a}$ |  |  |

*/wg EN 61000-4-2:1995 + A1:1998 + A2:2001

| Imię i nazwisko | Stanowisko | Data | Podpis |
| :--- | :---: | :---: | :---: |
| Wykonał: <br> mgr inż.Paweł Kaźmierczak | Administrator Systemu | 09.01 .2009 r |  |
| Sprawdził: <br> dr inż.Krzysztof Sieczkarek | Kierownik LA | 09.01 .2009 r |  |
| Zatwierdził: <br> dr inż.Grzegorz Szyszka | Dyrektor ILiM | 09.01 .2009 r |  |

Wyniki badań odnoszą się wyłącznie do badanych obiektów.
Bez pisemnej zgody Laboratorium Urządzeń Elektronicznych sprawozdanie nie może być powielane inaczej, jak tylko w całości.

## RP-080120-LA Sprawozdanie z badania Sygnalizatora SG-3U

strona 1 stron 4

# Instytut Logistyki i Magazynowania 

Jednostka Badawczo-Rozwojowa
Institute of Logistics and Warehousing
Research and Development Unit

## 1 Aparatura badaniowa:

- symulator wyładowań elektrostatycznych NSG 435 firmy Schaffner

2 Warunki zewnętrzne

| Temperatura otoczenia | $22,2 \quad{ }^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Wilgotność względna | $38,6 \quad \%$ |
| Ciśnienie atmosferyczne | 1005 hPa |

## 3 Stan pracy badanego urządzenia

Sygnalizator SG-3U (rejestrujący zdarzenia) współpracował z układem SKIP-IT-3.
Normalne działanie urządzenia w granicach określonych przez zleceniodawcę realizowało funkcję nadzoru (rejestracji zdarzeń) nad współpracującym z nim układem kontroli izolacji, temperatury i prądu SKP-IT-3.

Zasilanie sygnalizatora stanowił akumulator $12 \mathrm{~V}_{\mathrm{DC}}$

4 Wyniki badania:

## Wyładowania pośrednie

| Punkt wyładowczy | Metoda <br> wyładowania | Napięcie <br> $[k V]$ | Ilość <br> wyładowań | Kryterium <br> działania $\star$ / | Uwagi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VCP: | Przez <br> styk | $+2 /-2$ | $10 / 10$ | $\mathrm{a} / \mathrm{a}$ |  |
| lewy bok | Przez | $+4 /-4$ | $10 / 10$ | $\mathrm{a} / \mathrm{a}$ |  |
| VCP: | styk | $+4 /-2$ | $10 / 10$ | $\mathrm{a} / \mathrm{a}$ |  |
| górny bok | Przez | $+2 /-2$ | $10 / 10$ | $\mathrm{a} / \mathrm{a}$ |  |
| VCP: | styk | $+4 /-4$ | $10 / 10$ | $\mathrm{a} / \mathrm{a}$ |  |
| prawy bok | Przez | $+2 /-2$ | $10 / 10$ | $\mathrm{a} / \mathrm{a}$ |  |
| VCP: | styk | $+4 /-4$ | $10 / 10$ | $\mathrm{a} / \mathrm{a}$ |  |

[^0]Wyładowania bezpośrednie przez styk
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Punkt wyładowczy } & \begin{array}{c}\text { Metoda } \\ \text { wyładowania }\end{array} & \begin{array}{c}\text { Napięcie } \\ {[\mathrm{kV}]}\end{array} & \begin{array}{c}\text { Ilość } \\ \text { wyładowań }\end{array} & \begin{array}{c}\text { Kryterium } \\ \text { działania } * /\end{array} & \text { Uwagi } \\ \hline \begin{array}{c}\text { Obudowa metalowa } \\ \text { spód i boki }\end{array} & \begin{array}{c}\text { Przez } \\ \text { styk }\end{array} & \begin{array}{c}+2 /-2 \\ +4 /-4\end{array} & \begin{array}{l}10 / 10 \\ 10 / 10\end{array} & \begin{array}{l}\mathrm{a} / \mathrm{a} \\ \mathrm{a} / \mathrm{a}\end{array} & \\ \hline \begin{array}{c}4 \times \text { wkręty mocujące } \\ \text { panel czołowy }\end{array} & \begin{array}{c}\text { Przez } \\ \text { styk }\end{array} & +2 /-2 & 40 / 40 & \mathrm{a} / \mathrm{a} \\ +4 /-4 & 40 / 40 & \mathrm{a} / \mathrm{a}\end{array}\right]$
*/wg EN 61000-4-2:1995 + A1:1998 + A2:2001
Wyładowania bezpośrednie przez powietrze

| Punkt wyładowczy | Metoda <br> wyładowania | Napięcie <br> $[\mathrm{kV}]$ | Ilość <br> wyładowań | Kryterium <br> działania*/ | Uwagi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Panel czołowy | Przez <br> powietrze | $+2 /-2$ <br> $+4 /-4$ <br> $+8 /-8$ | $10 / 10$ <br> $10 / 10$ <br> $10 / 10$ | $\mathrm{a} / \mathrm{a}$ <br> $\mathrm{a} / \mathrm{a}$ <br> $\mathrm{a} / \mathrm{a}$ |  |
| Panel czołowy | Przez | $+2 /-2$ | $20 / 20$ | $\mathrm{a} / \mathrm{a}$ |  |
| 2x dioda LED | powietrze | $+4 /-4$ | $20 / 20$ | $\mathrm{a} / \mathrm{a}$ |  |
| $+8 /-8$ | $20 / 20$ | $\mathrm{a} / \mathrm{a}$ |  |  |  |
| Panel czołowy |  | Przez | $+2 /-2$ | $20 / 20$ | $\mathrm{a} / \mathrm{a}$ |
| 6xprzycisk | powietrze | $+4 /-4$ | $20 / 20$ | $\mathrm{a} / \mathrm{a}$ |  |
| $+8 /-8$ | $20 / 20$ | $\mathrm{a} / \mathrm{a}$ |  |  |  |

*/wg EN 61000-4-2:1995 + A1:1998 + A2:2001

## 5 Określenia:

Wyładowanie bezpośrednie (ang. Direct application) - wyładowanie przez urządzenie badane.
Wyładowanie pośrednie (ang. Indirect application) - wyładowanie przez płaszczyznę sprzęgającą sąsiadującą $z$ urządzeniem badanym w celu zasymulowania wyładowania człowieka przez przedmioty sąsiadujące z urządzeniem badanym.
Płaszczyzna sprzęgająca (ang. Coupling plane) - płyta przewodząca, przez którą wykonywane są wyładowania elektrostatyczne w celu zasymulowania wyładowań elektrostatycznych przez przedmioty sasiadujące z urządzeniem badanym:

## RP-080120-LA Sprawozdanie z badania Sygnalizatora SG-3U

 strona 3- VCP (ang. Vertical coupling plane) - pionowa płaszczyzna sprzęgająca,
- HCP (ang. Horizontal coupling plane) - pozioma płaszczyzna sprzęgająca.

Metoda wyładowania przez styk (ang. Contact discharge method) - metoda, w której elektroda symulatora styka się z urządzeniem badanym, a wyładowanie jest wywoływane wyłącznikiem wyładowczym symulatora.
Metoda wyładowania przez powietrze (ang. Air discharge method) - metoda, w której naładowana elektroda symulatora jest zbliżana do urządzenia badanego, a wyładowanie jest wywołane iskra do urządzenia badanego.

## Kryteria działania

Działanie urządzenia badanego klasyfikuje się według następujących kryteriów :
a - normalne działanie w granicach określonych przez producenta wyrobu, zleceniodawcę badań lub nabywcę wyrobu,
b - chwilowa utrata funkcji albo obniżenie jakości działania, które ustępuje po zakończeniu zaburzeń i po którym urządzenie badane powraca do normalnego działania bez udziału operatora,
c - chwilowa utrata funkcji albo obniżenie jakości działania, którego skorygowanie wymaga interwencji operatora,
d - utrata funkcji albo obniżenie jakości działania, którego nie można usunać z powodu uszkodzenia urządzenia lub programu, albo utraty danych.


[^0]:    */ wg EN 61000-4-2:1995 + A1:1998 + A2:2001

